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Abstract —We propose a distributed Learning Automata (LA) for spectrum management problem in Cognitive Radio (CR) networks.
The objective is to design intelligent Secondary Users (SUs) which can interact with RF environment and learn from its different
responses through the sensing. It is assumed there is no prior information about the Primary Users (PUs) and other SUs activities
while there is no information exchange among SUs. Each SU is empowered with an LA which operates in the RF environment with
different responses. That is, the SUs are considered as agents in a self-organized system which select one channel as an action
and receive different responses from the environment based on how much their selected actions are favorable or unfavorable. Using
these responses, SUs control their accesses to the channels for appropriate spectrum management with the objective to incur less
communication delay, less interference with PUs, and less interference with other SUs. The proposed LA-based distributed algorithm is
investigated in terms of asymptotic convergence and stability. Simulation results are provided to show the performance of the proposed
scheme in terms of SUs’ waiting times, interference with other SUs, the number of interruptions by PUs during their transmissions, and
fairness.
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1 INTRODUCTION

In order to promote the spectrum utilization, Cognitive
Radio (CR) technology has been proposed for a more
flexible and intelligent wireless communication [1]. In a
class of CR networks the Secondary Users (SUs) explore
the spectrum idle spaces and opportunistically exploit
them tacking into account the interference with licensed
or Primary Users (PUs) [2]. Therefore to be aware of
RF environment, each SU should behave intelligently by
spectrum sensing and appropriately interacting with this
environment [3].

The cognitive cycle [1] provides SUs’ reliable commu-
nications using four functionalities including spectrum
sensing, spectrum management, spectrum mobility and
handoff management, and spectrum sharing. Firstly us-
ing the sensing, the CR agents explore the spectrum
to find possible opportunities as an initial step for the
environment perception. Then, these sensing observa-
tions are used by SUs, as intelligent agents, for spectrum
management to choose the best available channel for
possible exploitation. Upon a PU’s packet arrival on this
channel, the corresponding SU must vacate this chan-
nel and perform spectrum handoff in order to switch
to another available channel or wait until the channel
becomes idle again. Finally, efficient spectrum sharing
mechanisms are required to avoid SUs’ contention for
available opportunities. Therefore, efficient design of
the cognitive cycle involves with appropriate interaction
with the environment to learn both the PUs’ activities

and the behavior of other SUs [4]. The former is required
to avoid collisions with PUs and is attained by efficient
spectrum sensing and handoff management. The latter
should be used for distributed coordinating of SUs to
share the opportunities efficiently and fairly and can be
attained with or without message exchanging.

Due to the dynamic nature of the network envi-
ronment, using artificial intelligence techniques in de-
signing context aware CR networks are received more
attention in recent researches. For example, there are
several studies on using machine learning, game theory,
artificial neural networks, and reinforcement learning in
designing efficient protocols for these networks [5], [6],
[7]. Specifically, a CR network can be modeled as a dis-
tributed self-organized multi-agent system in which each
SU or agent perform spectrum management by efficient
interacting with the environment through a learning
policy [5]. In this approach the effects of other SUs’
decisions can be considered as a part of the responses
of the environment for each SU. Learning algorithms are
appropriate techniques in designing and analyzing self-
organized networks [8], [9].

The objective of this paper is on performing spec-
trum management by SUs as agents in a self-organized
manner to exploit available spectrum opportunities on
primary channels efficiently and fairly only with a learn-
ing module and without any information exchange with
other SUs. The Learning Automata (LA) based module
is used to make the appropriate strategy in spectrum
decisions, spectrum resource allocation, and interference
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management autonomously and independently by each
SU using environmental feedbacks or responses [10].
That is the PUs’ packet arrival rates and service times as
well as the number of other SUs and their arrival rates
or channel selection strategies are unknown for each SU.

From each SU point of view, this environment is a non-
stationary environment [10], [11] since the SUs changing
their decisions over the time while new SUs may join and
current SUs may leave the network. The SU’s learning
module is designed to improve its channel selection
policy by updating the current strategy over time from
the received different rewards or penalties from the non-
stationary environment. Selecting busy or idle channel,
contending with other SUs in exploiting an idle channel,
and possible required handoff during a packet transmis-
sion are the responses of the environment which are used
during the on-line learning process. The system level
objective is to ensure that the decision making by SUs
converges to an equilibrium point in which the system
stability is guaranteed and the QoS of SUs are satisfied.

The rest of this paper is organized as follows: In
section II, some related work about using learning ap-
proach in CR networks are reviewed. System model and
problem statement are presented in section III. In section
IV, we review the LA and Q-model environment and
its properties. Then, in section V CR network is mod-
eled as a multi-agent system and the responses of the
environment and learning policy for this environment
are discussed. Some analytical results and properties of
the proposed spectrum management scheme are inves-
tigated in section VI. Simulation results and discussion
are provided in section VII before concluding the paper
in section VIII.

2 RELATED WORK

Distributed spectrum management schemes can be clas-
sified according to how the SUs receive or infer the re-
quired information about the environment and how this
information is used in making decisions or updating the
channel selection strategies. Traditionally the required
information for each SU about other SUs’ strategies can
be received by message passing among SUs by an in
band information exchange or using a common control
channel [12]-[18]. This information, on the other hand,
can be learned by observing the local experience of each
SU in interacting with the environment [19]-[28]. Incor-
porating the received information in the former scheme
for decision making by each SU is simpler but incurs
overhead to the network for information exchange and
synchronization. On the other hand, the latter scheme
does not incur overhead, however, typically designing
and analyzing efficient self-organized mechanisms are
more difficult.

In [12], [13] the spectrum access problem is modeled
as a graphical congestion game with the aim to mini-
mize the interference and congestion among competitive
neighboring SUs. In [14], a graphical game model is

proposed for opportunistic spectrum access (OSA) and
two uncoupled learning algorithms are proposed. The
first one needs a common control channel between SUs
to achieve the optimal solution whereas the second one
achieves suboptimal solution without using this chan-
nel. In [15], by designing a game theoretic model for
dynamic spectrum access problem, a learning algorithm
based on regret tracking procedure is introduced. In [16],
the authors proposed spatial adaptive play (SAP) and
concurrent-SAP which needs global coordination of the
players, to achieve a near-optimal solution. In [17], a
dynamic strategy learning (DSL) algorithm is proposed
for channel selection problem. By introducing a priority
virtual queue interface in order to exchange information
among multiple SUs, each SU reaches a better response
solution over the time. In [18], the distributed OSA
is considered as a multi-armed bandit problem and a
distributed matching-learning algorithm is proposed to
achieve high throughput with an upper-bound for the
system regret provided that the required information
exchange between SUs is guaranteed.

In [19], [20] stochastic learning automata (SLA) is
used in a game theoretic solution without information
exchange among SUs for OSA. In SLA, the agents use
mixed strategies to select actions according to a LRI

automaton to reach an equilibrium point in a distributed
environment [21]. [19], [20] consider only the interference
among SUs as the response of the environment without
attending to the priority of PUs and their possible inter-
ruptions.

In [22] a reinforcement multi-agent Q-Learning is
proposed for a simple network with two SUs without
information exchange. In [23] a distributed Q-Learning
is proposed in order to decrease the interference between
SUs assuming complete and incomplete information of
the environment. The optimal policy is learned by agents
in the complete information case which needs to train
a neural network to find the appropriate values for
reinforcement learning. In the incomplete information
case, a suboptimal policy is made by training a complex
neural network which makes the decision making com-
plicated. A distributed reinforcement learning algorithm
with less information and complexity is proposed in
[24] to trade-off between exploration and exploitation in
which by controlling the exploration phase, SUs learn a
preferred set of channels for exploitation. In [25] different
schemes are proposed for efficient exploration phase and
finding the preferred set of channels by using reinforce-
ment learning. These studies are focused on exploration
and finding the preferred channels which reduce the
sensing cost in CR networks without considering the
priority of PUs and competition among SUs. In [26] a
distributed learning mechanism is proposed based on
Multi Response Learning Automata (MRLA) in which
the effect of PUs on SUs’ packet transmission as well as
the interference between SUs are considered as different
responses of the environment. Each SU learns to make
decisions such that incur less interference and achieve
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high throughput. Assuming a simple traffic model for
PUs, the effects of PUs’ priority and their interruptions
do not take into account in [26]. In [27], considering
OSA as a multi-armed bandit problem, two distributed
learning schemes are proposed with minimal total regret
to maximize the system throughput. The first scheme
needs some prior information of the system. In the
second one, this information could be estimated by
SUs cooperation provided that the PUs’ traffic pattern
do not change over the time. A fully distributed CR
network with no information exchange among SUs is
formulated as a multi-armed bandit problem with an
optimal system regret in [28] in which none or only one
of SUs receives response from the environment when
interference occurs.

In this paper, a learning automaton based scheme is
designed for channel selection by SUs in a distributed
and self-organized manner by receiving the responses
of the environment and without information exchange
among SUs. It takes into account the priority of PUs and
their interruptions as well as the collision between SUs
in spectrum sharing problem. It is supposed that SUs do
not have prior information about the RF environment.
That is, the PUs’ packet arrival rates and their service
times as well as the number of other SUs and their
arrival rates or channel selection strategies are unknown
from each SU point of view. The environment is non-
stationary in which SUs or PUs can leave or join the
network when other SUs are taking service.

3 SYSTEM MODEL AND PROBLEM STATE-
MENT

We consider a CR network with M heterogeneous time
slotted channels which are used by high-priority PUs.
The set of channels and the corresponding set of ded-
icated PUs are denoted by F = {F1, F2, . . . , FM} and
PU = {PU1, PU2, . . . , PUM}, respectively. The aver-
age service rate of channel Fi is denoted by µi (ar-
rivals/slot) where PUi’s packets arrive according to a
Poisson process with average λ

(PU)
i (arrivals/slot) and

wait in a high-priority queue to get service. Also, there
are N low-priority SUs which opportunistically exploit
the available spectrum and their set is denoted by
SU = {SU1, SU2, . . . , SUN}. For SUj there is an action
set which is denoted by aj = {aj1, aj2, . . . , ajM} where
aji is the action of selecting channel Fi by SUj .

When SUj has a packet arrival event in time slot
t, it chooses action aj(t) = aji, i = 1, . . . , M with
probability pji. For efficient spectrum management, SUj

should adjust its action selection probability profile
pj = [pj1, pj2, . . . , pjM ] taking into account the available
service rates of the channels which may be exploited by
other SUs. Therefore, the two dimensional matrix P =[
pT

1 ,pT
2 , . . . ,pT

N

]T represents the SUs’ action selection
probabilities in which its rows and columns corresponds
to the SUs and channels, respectively. Let p−j denotes
the action selection probabilities of all SUs except SUj .

The packet arrival process of SUj is a Poisson process
with average λ

(SU)
j (arrivals/slot). Hence the offered

packets of SUj for exploiting channel Fi is also a Poisson
process with average λ

(SU)
ji = pjiλ

(SU)
j (arrivals/slot).

The packets service times of PUi and SUj on channel
Fi are modeled by random variables X

(PU)
i and X

(SU)
ji

respectively, which follow the exponential distribution
with average E[X(PU)

i ] = E[X(SU)
ji ] = 1

µi
. Also, it is

assumed that the total load of PUs and SUs do not
overload this channel, i.e., we have:

λ
(PU)
i +

N∑

j=1

λ
(SU)
ji < µi (1)

At the beginning of each time slot, SUj selects and
perfectly senses a channel and will exploit this channel
if it is idle [29]. If the selected channel is busy, the
intended packet should wait in a low-priority queue
which is assigned by SUj to this channel. SUj continues
sensing this channel and contends with other SUs for
exploitation using the CSMA method. If the packet trans-
mission of SUj is interrupted by the PU’s packet arrival,
the interrupted packet waits until the current channel
becomes idle again. Fig. 1 shows the time between an
arrival of a SUj ’s packet until it departures.

The experienced possible contention with other SUs
and interruptions by the PU is used in the learning
procedure of SUj at the end of each packet transmission.
The objective of the learning procedure is adjusting the
action selection probabilities such that SUj encounters
less interference with other SUs, less handoff occur-
rence during its transmission, and less communication
delay. Note that the RF environment is completely het-
erogonous in which the PUs’ service rates and their
arrival rates are different. Therefore, SUs experience
different feedbacks on different channels. Also, current
SUs may leave or new SUs may join to the system which
makes the environment more dynamic and change the
responses of the environment non-stationary. Learning
to select appropriate actions in this environment is a
challenging issue in multi-agent systems.

4 BACKGROUND ON LA AND Q-MODEL ENVI-
RONMENT

Learning Automata (LA) is an abstract model which se-
lects an appropriate action out of a finite set of available
actions during the interaction with a random environ-
ment. The random environment evaluates the selected
input action and responses to the LA as an output, based
on how much the selected input action is favorable or
unfavorable. Then, the LA updates its action selection
probabilities based on received response. A variable-
structure LA [10], is defined mathematically by the
quadruple LA = {a, β,p, T} and a random environment
is define by triple E = {a, β, c}. In these definitions,
a = {a1, a2, . . . , ar} represents the finite action set for
the LA and the input set for the environment.
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Fig. 1. SUj ’s packet transmission on channel Fi and different possible rasing events.

In a simple P-Model environment, β = {0, 1} repre-
sents the binary input set for the LA and the output set
for the environment where β = 0 and β = 1 shows the
favorable and unfavorable response respectively. In this
environment, c = {c1, c2, . . . , cr} represents the penalty
probabilities in which ci corresponds to the penalty
probability to action ai and is defined by ci = Pr[β =
1|a = ai]. For variable-structure LA, p = {p1, p2, . . . , pr}
and p(k + 1) = T [a(k), β(k), p(k)] represent the action
probability set and the learning algorithm respectively.

The environment can be modeled by Q-Model with
more outputs in a finite discrete number of responses to
each action. Let βi = {β1

i , β2
i , . . . , βmi

i } denotes the finite
set of the responses of the environment for action ai, i =
1, . . . , r where mi is the number of these responses. Ded-
icated to action ai and the corresponding environment
output βl

i there is a penalty probability which is defined
by cl

i = Pr[βi = βl
i|a = ai], i = 1, . . . , r, l = 1, . . . , mi.

Therefore, the expected penalty for action ai is defined
by [10]:

Ci = E[βi|a = ai]
= β1

i Pr
[
βi = β1

i |a = ai

]
+ . . .

+ βmi
i Pr

[
βi = βmi

i |a = ai

]

=
mi∑

l=1

βl
ic

l
i (2)

The LA updates the selection probability of action ai

taking into account the environment response as given
by (3) which is known as SLRP scheme where α is the
learning parameter [10]. It is worth to note that when
an agent selects action am 6=i, the probability of action ai

is updated based on the response of the environment to
action am6=i which is βm 6=i as we can see in the first part
of (3). If βm6=i is high, the probability of selecting action
ai will increase and vice versa.

In many practical cases, the environment may change
during the learning process where the penalty probabil-
ities are varying. In these non-stationary environments,
the actions of the LA affect the penalty probabilities of
the environment. The value of expected penalty, Ci, is
depended on the value of action selection probabilities
for non-stationery environment.

According to how the penalty values are changed

with the actions of the LA, three mathematical models
are introduced in [10] which are referred to as Model
A, Model B, and Model C. In Model A, the penalties
changes are constant however in Model B penalty values
are functions of action selection probabilities which are
monotonically increasing functions respect to action se-
lection probabilities. In Model C, penalty values are de-
pendent on action selection probabilities and the penalty
values of the previous step.

Adopting Model B, we consider a set of penalties
for each action of SUs which their values are mono-
tonically increasing functions respect to action selection
probabilities. In this model, the action which is selected
more often will have higher penalty probability [30].
This feature enables the agents to control their actions
in the multi-agent environment specially in the case of
resource allocation and sharing among multiple agents
where none of agents can perform one action unilaterally
to use the system resources.

5 CR NETWORK AS A MULTI-AGENT SYSTEM

Consider each SU as an intelligent agent empowered
with an LA in Q-Model environment. SUj has no prior
information about the other agents, SU−j , and the envi-
ronment except the channels service rates. The PUs’ ar-
rival rates on different channels, other SUs’ arrival rates,
and their action selection probabilities are unknown dur-
ing the learning process. SUj receives different responses
depending on the different events in the environment
and also the actions of SU−j , and makes the decisions
about channel selection probabilities only by observing
the environment and its responses.

5.1 The Possible events in the environment

Each SU is equipped by a scheduler which makes the de-
cision about channel selection probabilities and updates
these probabilities according to the system feedback
from the transmitted packet. A simple flow of different
situations that an SU may encounter during a packet
transmission is shown in Fig. 2. In this figure, all possible
scenarios after sensing a given channel are shown.

Assume that based on current action probability pro-
file, SUj decides to send a new arriving packet on
channel Fi. SUj sends its packet immediately if channel
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pi(t + 1) =





pi(t) + βl
m 6=i(t)

[
α

r−1 − αpi(t)
]
−

[
1− βl

m 6=i(t)
]
αpi(t), if a(t) 6= ai.

pi(t + 1) = pi(t)− βl
i(t)αpi(t) +

[
1− βl

i(t)
]
α(1− pi(t)), if a(t) = ai.

(3)
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Fig. 2. Flow of different situations that SUs may encounter.

Fi is idle. However, if it finds this channel busy, the
packet should wait in the low-priority queue of SUj .
During the waiting time of this packet, other SUs may
also have packet arrivals which are decided to send on
channel Fi. When channel Fi becomes idle, the wait-
ing SUs will collide and then, they will contend with
each other to exploit this channel. SUj ’s transmission is
therefore deferred until it wins the contention. If SUj

wins, it can transmit its packet if no interruption by
high-priority PUs is sensed. However, its transmission
on channel Fi may be interrupted if there is a PU’s
packet arrival during the service time of SUj ’s packet. In
this case, SUj should perform handoff procedure and the
interrupted packet must return to the low-priority queue
and will be retransmitted when the channel becomes
idle. Finally, when SUj ’s packet transmission on channel
Fi is finished, it performs the learning procedure based
on the different perceptions on channel Fi. In the follow-
ing, different events in the environment which can be
effective in the learning process are discussed. Based on
these events and their sequence, the different responses
of the environment are introduced which can help the
SUs to perform better spectrum decisions in upcoming
time slots. From SUj point of view sensing channel
busy or idle, collision with other SUs, and interruption
by the PUs’ arrivals can be considered as the most
important events during its packet transmission and the
respective responses of the environment can help SUj

to learn an appropriate spectrum decision. Therefore,
in order to follow up the effect of these events in the
learning process and the punishment of the environment
respect to these events, the probability of these events
are computed in the following. These probabilities help

us to analyze the proposed scheme and follow up the
behavior of the SUs during the learning process.

At the beginning of a packet transmission, SUj senses
channel Fi. Since SUj ’s packets arrival is a Poisson
process, using the PASTA, i.e., Poisson Arrivals See Time
Average, property each packet sees the environment,
channel Fi, in its average status.

Let P
(busy)
i denote the probability that SUj senses

channel Fi busy. This probability can be computed by
the average proportion of time that this channel is busy
and is given by (4).

P
(busy)
i =

λ
(PU)
i +

∑N
j=1 pjiλ

(SU)
j

µi
(4)

SUj senses channel Fi idle with probability 1−P
(busy)
i

and in this case, it can send its packet immediately
without any collision. However, if it senses this channel
busy, it must wait and during this waiting time, if other
SUs have packet arrival on channel Fi, there will be a
collision between these SUs when this channel becomes
idle. This can be inferred that the collision event is
dependent on the busy status of channel Fi and the
probability of the collision event is under the condition
of the busy probability of channel Fi. In addition, in
order to compute the probability of the collision between
SUs, denoted by P

(arrival)
(k 6=j)i , it is needed to compute the

probability of at least one arrival of SU−j during waiting
time of SUj when channel Fi is busy. The expected
waiting time of SUj ’s packet on channel Fi is denoted
by E[Wji]. Since the probability of zero arrival for one of
SUk, k = 1, . . . , N, k 6= j on channel Fi during the E[Wji]
is exp(−E[Wji]pkiλ

(SU)
k ), the probability that SU−j have

at least one packet arrival during the E[Wji] is:
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P
(arrival)
(k 6=j)i = 1− exp

(
− E[Wji]

N∑

k=1
k 6=j

pkiλ
(SU)
k

)
(5)

In order to compute E[Wji] using PRP M/G/1 queue-
ing model for high-priority PUs and low-priority SUs we
have (6) and (7) [31].

Since X
(SU)
ji and X

(PU)
i follow the exponential distri-

bution with average 1
µi

, E[Wji] is given by:

E[Wji] =
pjiλ

(SU)
j + Rji(

µi − λ
(PU)
i

)(
µji − pjiλ

(SU)
j

) (8)

where Rji and µji are:

Rji = λ
(PU)
i +

N∑

k=1
k 6=j

pkiλ
(SU)
k (9)

µji = µi −Rji (10)

By substituting (8) in (5) we can compute the
probability of at least one arrival of SU−j on channel
Fi during the waiting time of SUj when channel Fi is
busy. We assume P

(collision)
ji as the collision probability

of SUj on channel Fi and it can be computed
as P

(collision)
ji = Pr(arrival(k 6=j)i|F (busy)

i )P (busy)
i +

Pr(arrival(k 6=j)i|F (idle)
i )P (idle)

i in which
Pr(arrival(k 6=j)i|F (busy)

i ) means that at least one
arrival of SU−j when SUj senses channel Fi busy
and Pr(arrival(k 6=j)i|F (idle)

i ) means that at least one
arrival of SU−j when SUj senses channel Fi idle. As we
mentioned before, from SUj point of view, when this SU
has a packet arrival and senses channel Fi idle, it means
there is not any arrivals of other SUs on that moment
and therefore Pr(arrival(k 6=j)i|F (idle)

i ) = 0. Therefore,
the probability of the collision between SUj and SU−j

can be considered as P
(collision)
ji = P

(arrival)
(k 6=j)i P

(busy)
i .

After the collision, when SUj wins the contention,
it starts to take service on channel Fi. Since handoff
event also affects the learning process of SUj , we need
to compute the probability of handoff occurrence on
channel Fi which is denoted by P

(handoff)
i during the

packet transmission of this user. This probability is given
by [32]:

P
(handoff)
i =

λ
(PU)
i

λ
(PU)
i + µi

(11)

In addition, the handoff event is not dependent on the
collision event between SUs as well as the busy or idle
status of the channel. Whether or not SUj senses the
corresponding channel busy, or collides with other SUs
or not, it may confront a PU’s packet arrival during its
service time. Therefore, this event is not under the con-
dition of other discussed events. In the next section, we
introduced responses of the environment corresponding
to these events.

5.2 Evaluating Environment Repossess

Assume SUj selects action aji, i.e., to transmit its packet
on channel Fi. According to different possible events
which may happen during its packet transmission the
following responses of the environment are possible.
Note that SUj makes decision about its actions only by
using these responses without any information exchange
with other SUs or any prior information about PUs
or the actions of SU−j . Also, the probability of each
responses of the environment can be computed using
cl
ji = Pr[βji = βl

ji|aj = aji], l = 1, . . . , 6 according to
value of P

(busy)
i , P

(arrival)
(k 6=j)i , and P

(handoff)
i .

• The arriving packet of SUj finds the channel busy,
it also contends with other SUs before exploiting
the channel, and during its exploitation handoff
occurs. The response of the environment is the
greatest possible penalty with value β1

ji where the
corresponding penalty probability is given by (12).

c1
ji = P

(handoff)
i P

(collision)
ji (12)

= P
(handoff)
i P

(busy)
i P

(arrival)
(k 6=j)i

• The arriving packet of SUj finds the channel busy,
but it exploits the channel without contending with
other SUs, and during its exploitation handoff oc-
curs. The response of the environment is β2

ji with
penalty probability in (13).

c2
ji = P

(handoff)
i P

(Nocollision)
ji (13)

= P
(handoff)
i P

(busy)
i (1− P

(arrival)
(k 6=j)i )

• The arriving packet of SUj finds the channel idle but
during its exploitation handoff occurs. The response
of the environment is β3

ji with penalty probability in
(14).

c3
ji = P

(handoff)
i (1− P

(busy)
i ) (14)

• The arriving packet of SUj finds the channel busy, it
also contends with other SUs before exploiting the
channel without any handoff. The response of the
environment is β4

ji with penalty probability in (15).

c4
ji = (1− P

(handoff)
i )P

(collision)
ji (15)

= (1− P
(handoff)
i )P

(busy)
i P

(arrival)
(k 6=j)i

• The arriving packet of SUj finds the channel busy,
but it exploits the channel without contending with
other SUs, and also without any handoff. The re-
sponse of the environment is β5

ji with penalty prob-
ability in (16).

c5
ji = (1− P

(handoff)
i )P

(Nocollision)
ji (16)

= (1− P
(handoff)
i )P

(busy)
i (1− P

(arrival)
(k 6=j)i )

• The arriving packet of SUj finds the channel idle,
without any handoff. The response of the environ-
ment is β6

ji with penalty probability in (17).

c6
ji = (1− P

(handoff)
i ) (1− P

(busy)
i ) (17)
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E[Wji] =
E[Ri](

1− E[X(PU)
i ]λ(PU)

i

)(
1− E[X(PU)

i ]λ(PU)
i −∑N

j=1 pjiλ
(SU)
j E[X(SU)

ji ]
) (6)

where E[Ri] is the average remaining service time on channel Fi:

E[Ri] =
1
2


E[(X(PU)

i )2]λ(PU)
i +

N∑

j=1

(E[(X(SU)
ji )2]pjiλ

(SU)
j )


 (7)

Where in (12-17) 1 = β1
ji > β2

ji > β3
ji > β4

ji > β5
ji >

β6
ji = 0 are some selected constants.
The larger value of βl

ji shows that the action of
SUj in selecting channel Fi is more unfavorable [10]
and SUj precepts more unfavorable events during its
transmission. We rewrite (3) for SUj , based on its action
selection probabilities and βl

ji in (18) where mi = 6
shows the number of the possible responses of the
environment when SUj selects channel Fi. SUj updates
its strategy profile only by using its previous strategy
profile and received βl

ji from the environment without
any probability computations. We use (12)-(17) in order
to analytically follow up the updating strategy and the
behavior of SUs during the learning process.

Using (12-17), the expected penalty for SUj on select-
ing action aji which is denoted by Cji can be computed
by (19).

It is worth to note that we do not consider the effect
of multiple handoffs or multiple contentions with other
SUs explicitly in our analysis separately because their
probabilities and hence, their effects in the learning
process are negligible. The effects of these events in the
learning process are considered once at the end of the
packet transmission. Specifically, in a scenario that an SU
during its packet transmission, confronts with multiple
collisions and contentions with the colliding SUs, the
corresponding effect is considered once in the learning
process at the end of the packet transmission. Also, if
its packet transmission confronts multiple interruptions
by PU, we consider only one interruption effect in learn-
ing process. Considering multiple penalties for multiple
interruptions or multiple contentions per packet will
increase the computational complexity of the proposed
scheme without any significant results in practice due to
their negligible probabilities.

In the next section, we show that the defined responses
of the environment and therefore the computed expected
penalty in (19) make the proposed algorithm analytically
tractable. The pseudo code of the proposed multi-agent
LA for multiple SUs is presented in Algorithm 1.

6 ANALYSIS OF THE PROPOSED SCHEME

As we computed in (19), Cji(P) is a function of pj and
p−j which shows the non-stationary property of the
environment. We show the self-organization property
for spectrum decision of SUs which behave based on
Algorithm 1 in the following.

Algorithm 1 Event based LA scheme for SUs
eventList.createSortList()
loop

if (there is an arrival event) then
eventList.enqueue(arrivalEvent)
E = eventList.dequeue()

if (E is an arrival event) then
call processArrival(E)

if (E is a collision event) then
call processCollision(E)

if (E is a handoff event) then
call processHandoff(E)

if (E is a departure event) then
call processDeparture(E)

if (there is success departure) then
eventList.enqueue(departureEvent)

end loop

processArrival(E)
if (E is SUj ’s arrival)

Sense Fi where Fi=the selected channel
based on pj(t)
if (Fi is busy) then

wait and sense Fi until it becomes idle
if (there is a Collision with other SUs) then

eventList.enqueue(collisionEvent)
if (E is PU’s arrival during SUj ’s service time)

eventList.enqueue(handoffEvent)

processCollision(E)
perform CSMA mechanism

processHandoff(E)
append interrupted packet to SUj ’s queue
eventList.enqueue(arrivalEvent)
wait and sense Fi until it becomes idle

processDeparture(E)
choose appropriate value of βl

ji based on
environment different events
update pj based on learning scheme (18)

6.1 Self-Organization Property

We first discuss how the selected actions by the SUs
affect the responses of the environment and vice versa.

Proposition 1: The expected penalty Cji(P) in (19)
meets the properties of the non-stationary environment
Model B and also is monotonically increasing function
respect to p−j .

Proof: Please see Appendix A.
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pji(t + 1) =





pji(t) + βl
jm 6=i(t)

[
α

M−1 − αpji(t)
]
−

[
1− βl

jm 6=i(t)
]
αpji(t)

if aj(t) 6= aji and l = 1, 2, . . . , mi.

pji(t + 1) = pji(t)− βl
ji(t)αpji(t) +

[
1− βl

ji(t)
]
α(1− pji(t))

if aj(t) = aji and l = 1, 2, . . . , mi.

(18)

Cji(P) =
6∑

l=1

βl
jic

l
ji

=
λ

(PU)
i

λ
(PU)
i + µi

pjiλ
(SU)
j + λ

(PU)
i +

∑N
k 6=j pkiλ

(SU)
k

µi
β1

ji − β3
ji + (β2

ji − β1
ji) exp(− pjiλ

(SU)
j + Rji

(µi − λ
(PU)
i )(µji − pjiλ

(SU)
j )

N∑

k 6=j

pkiλ
(SU)
k )




+
µ

(PU)
i

λ
(PU)
i + µi

pjiλ
(SU)
j + λ

(PU)
i +

∑N
k 6=j pkiλ

(SU)
k

µi
β4

ji + (β5
ji − β4

ji) exp(− pjiλ
(SU)
j + Rji

(µi − λ
(PU)
i )(µji − pjiλ

(SU)
j )

N∑

k 6=j

pkiλ
(SU)
k )




+ β4
ji

λ
(PU)
i

λ
(PU)
i + µi

(19)

Proposition 1 implies that if SUj selects channel Fi

more often, it receives more penalty that causes SUj

controls its access to this channel in a self-organizing
manner which avoids selfish exploitation of this channel
by SUj . This behavior leads to fairness among mul-
tiple SUs without any information exchange. Also, if
other SUs, SU−j , exploit channel Fi more often, the
environment response makes this channel unfavorable
selection for SUj . Therefore, only by interaction with the
environment, the SUs perform an appropriate spectrum
management which leads to less interference with PUs,
less contention between themselves, and also provides
fairness among them.

6.2 Convergence Behavior

The asymptotic behavior of the proposed scheme in
terms of convergence and stability is discussed in this
section. Let define:

4P(t) = E
[
P(t + 1)|P(t)

]−P(t) (20)

in which the value of pji(t + 1) follows (18).
Proposition 2: The value of components of 4P(t) for

SUj on selecting channel Fi is given by (21).
Proof: Please see Appendix B.

As we can see in the components of 4P(t) in (21),
4P(t) is a function of P(t). Therefore, we can rewrite
(20) as follow:

4P(t) = αf(P(t)) (22)

where fji(P(t)) = 1
M−1

∑M
m 6=i pjm(t)Cjm(P(t)) −

pji(t)Cji(P(t)) and in consequence rewrite (18) in (23):

P(t + 1) = αf(P(t)) + P(t) (23)

Therefore, the updating rule of action selection proba-
bilities for SUj follows the components of equation (23).
Now, we show that the proposed distributed mechanism
in which the SUs follow Algorithm 1, converges to
an equilibrium point that is unique and asymptotically
stable.

Proposition 3: Irrespective of P(0) and for sufficiently
small values of α, Algorithm 1 converges to equilibrium
point P∗ which is the solution of the system of equations
in (24).





p∗1iC1i(P∗) = p∗1mC1m(P∗) i,m = 1, . . . , M∑M
i=1 p1i = 1

p∗2iC2i(P∗) = p∗2mC2m(P∗) i,m = 1, . . . , M∑M
i=1 p2i = 1

...
p∗NiCNi(P∗) = p∗NmCNm(P∗) i,m = 1, . . . , M∑M

i=1 pNi = 1

(24)

Proof: Please see Appendix C.
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4pji(t) = α


 1

M − 1

M∑

m 6=i

pjm(t)Cjm(P(t))− pji(t)Cji(P(t))


 (21)

Event
Handler

Class SU
Class PU

Class
Channel

Channel 
Idle Space
For SU’s

usage

Channel
Busy

Period

Scheduler

Packet 
Arrival

Learnin 
Module

Packet 
Arrival

Handoff
Event

Departure
Event

Next event scheduling

Event creation

Feedback

Collision
Event

Fig. 3. Simplified simulator structure.

This proposition shows that Algorithm 1 has at least
one equilibrium point and there is at least one solution
for the system of equations (24). In order to investi-
gate the stability property of the equilibrium point of
proposed scheme, we use the Lyapunov theorem for
discrete-time autonomous systems.

Proposition 4: The equilibrium point P∗, when Algo-
rithm 1 converges is asymptotically Lyapunov stable.

Proof: Please see Appendix D.
Proposition 5: The equilibrium point P∗ which is com-

puted by system of equations (24) is unique over the
domain of P.

Proof: Please see Appendix D.
It is worth to note that the tradeoff between conver-

gence speed and accuracy can be made by selecting
an appropriate value for learning parameter α. That
is by selecting smaller values for α the algorithm will
converge slowly and accurately.

7 SIMULATION ENVIRONMENT AND RESULTS

In order to simulate the distributed CR network, we
use the simulator which we introduced in [33]. This
simulator has been developed using C++ language in
an extensible modular structure which has flexibility
in choosing different parameters and adding additional
modules. We extend this simulator by adding learning
module to SUs’ class. When a packet is departed, the
corresponding SU learns from the observation of this
packet and changes its channel selection probabilities for
next packets. In Fig. 3, a simple block diagram of this
simulator including the learning module is shown.

The network has three licensed channels with the
service rates µ1 = 0.2, µ2 = 0.15, µ = 0.25. The average
PUs’ packets arrival rates on the corresponding channels

are λ
(PU)
1 = 0.04, λ

(PU)
2 = 0.05, λ

(PU)
1 = 0.01. Also,

six SUs with average packets arrival rates λ
(SU)
1 =

0.02, λ
(SU)
2 = 0.03, λ

(SU)
3 = 0.04, λ

(SU)
4 = 0.05, λ

(SU)
5 =

0.06, λ
(SU)
6 = 0.07, are considered in the system. The

selected penalty responses of the environment are β1
ji =

1, β2
ji = 0.8, β3

ji = 0.6, β4
ji = 0.4, β5

ji = 0.2, β6
ji = 0 and

the learning parameter is α = 0.001.
First of all, we discuss the self-organized properties

of the proposed distributed scheme. We then discuss
the performance metrics in terms of the average waiting
time, average number of transmission deferring by other
SUs, and average interruptions by PUs in comparison
with a centralized solution which minimizes the ex-
pected penalty for the whole system.

7.1 Self-Organized Property in Dynamic Environ-
ment

Solving (24) numerically, the final strategy profiles for
six SUs are approximately equal and given by pj =
(0.30, 0.21, 0.47), j = 1, . . . , 6. In the simulation, the strat-
egy profile for each SU is initialized by a random feasible
strategy which selects each channel according to the unit
uniform distribution.

Generating packets for each SU and processing the
system events the variations in the strategy profile of
each SU until convergence is shown in Fig. 4. We find
that the final strategy profile of each SU is consistent
with the corresponding computed strategy profile. Also,
since we use SLRP scheme in the learning process, start-
ing from different initial strategies all SU approximately
reach the same profile which guarantees the fairness
among SU. Also, channel 3 which has the maximum
service rate and the minimum PU utilization, is selected
by SUs with a higher probability.

In order to investigate the adaptivity of the pro-
posed multi-agent learning, in the next scenario SU4,
SU5, and SU6 leave the system. According to (24),
the expected final strategy profiles of the remaining
three SUs are approximately equal and given by pj =
(0.25, 0.17, 0.57), j = 1, . . . , 3. In this case, SU1, SU2, and
SU3 receive less penalty from the environment and hence
update their strategies profile. In Fig. 5, the variations
in the strategy profiles of these SUs are depicted un-
til convergence which is consistent with corresponding
computed strategy profiles.

In the next simulation, we assume the PUs’s utilization
on channels are changes. That is the packet arrival rates
of PU1, PU2, and PU3 are changed to λ

(PU)
1 = 0.01,

λ
(PU)
2 = 0.01, and λ

(PU)
3 = 0.1 respectively. According to

(24) we expect that the new strategy profiles of SU1, SU2,
and SU3 are approximately equal and given by pj =
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(0.46, 0.38, 0.14), j = 1, . . . , 3. In Fig. 6, the variations
in the strategy profiles of these SUs until convergence
are depicted which shows that the agents adapt their
strategies in a self-organized manner if the environment
is changed.

7.2 Efficiency of the Final Strategy Profiles

Other performance metrics of the proposed multi-agent
learning scheme include the average waiting time, aver-
age number of transmission deferring by other SUs, and
the average number of interruptions by PUs for each
packet.

Also, we compare the efficiency of the proposed
scheme in these metrics with a Global Optimum Solution
(GOS) which is achieved by a centralized strategy maker.
This strategy maker minimizes the penalty responses of
the environment for the whole system. It is assumed that
this central strategy maker knows all system parameters
and aims to find the optimum channel selection strategy
for each SU such that the system-wide punishment is
minimized. The normalized incurred expected penalty
for all SUs in the system is given by (25). The logic
behind defining this objective is rooted in evaluating the
optimality of distributed solutions in distributed systems
[33], [34], [35]. The designed global optimum solution
is typically aimed to optimize a weighted sum of the
objective functions of the individual agents taking into
account the possible cross decisions effects. It can be
assumed as the best achievable central solution and can
be compared with the proposed distributed solution.

G =
1

∑N
j=1 λ

(SU)
j

N∑

j=1

λ
(SU)
j (

M∑

i=1

pjiCji(P)) (25)

where
∑M

i=1 pjiCji(P) is the expected penalty of SUj

on all channels. The normalizing factor
λ

(SU)
jPN

j=1 λ
(SU)
j

reliefs

the effect of SUj ’s rate on the received penalty.
On the other hand, the centralized decision maker

should take into account the fairness of the system
in resource allocation. The decision maker uses Jain’s
fairness index [36] to measure the SUs’ share from the

system spectrum opportunities where ρj =
PM

i=1 pjiλ
(SU)
jPM

i=1 µi

is used as the total utilization of SUj on all channels.
The GOS is achieved by solving the optimization prob-

lem in (26) in which the system normalized expected
penalty is minimized under the constraint of fairness
among SUs.

where F is the fairness index which should be met.
We compare the final strategy profiles of the proposed
self-organized scheme with the GOS that has the same
fairness in the mentioned performance metrics.

In Fig. 7, the packets’ average waiting time, the aver-
age number of deferring by other SUs before transmis-
sion, and the average number of interruptions by PUs are
shown respectively. The results in these figures are the
average of 100 times run. Fig. 7.(a) shows the variations

of the packets’ average waiting time during the learning
process. In this figure by adapting to the environment the
average waiting time of SUs’ packets has a decreasing
trend. The final values of these waiting times are com-
pared with the GOS in Table I where both schemes meet
Jain’s fairness index F ' 0.87. In GOS, SU5 and SU6

which have greater arrival rates are incurred the greater
delay to meet the fairness. Fig. 7.(b) shows the average
number of deferring by other SUs before transmission
per each packet for each SU during the learning process
which shows a decreasing trend. Also, the comparison
with GOS is presented in Table 1. In GOS, SUs encounter
less transmission deferring since the effect of collision
and contention between SUs is explicitly minimized in
centralized decision maker. Fig. 7.(c) shows the average
number of PU’s interruption per packet for each SU
which again has a decreasing trend. Also, Table I shows
that the number of interruptions by PUs in the GOS for
SU5 and SU6 which have greater arrival rates are less
than other SUs while in the self-organized scheme these
values are approximately equal. The reason is that effects
of handoffs are explicitly minimized in the GOS.

8 CONCLUSION

We propose a distributed learning automata for spec-
trum management in CR networks in which SUs as intel-
ligent agents interact with the RF environment and learn
to select appropriate spectrum by the different responses
of the environment in a self-organized manner. There is
no prior information about the environment, PUs’ arrival
rates, other SUs’ arrival rates, and action selection of
other SUs. Also, there is no information exchange among
multiple SUs. We investigate the convergence behavior
and the stability property of the proposed distributed
scheme analytically which are justified by simulation. In
future work, we study admission control problem in CR
networks when the arrival rates of SUs may exceed the
channels service rates.
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Fig. 4. Variation of the strategy profiles until convergence for a)SU1, b)SU2, c)SU3, d)SU4, e)SU5, f)SU6.
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Fig. 5. Variation of the strategy profiles after SU4, SU5, SU6 leave the system for a)SU1, b)SU2, c)SU3.
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Fig. 6. Variation of the strategy profiles after PUs’ arrival rates are changed for a)SU1, b)SU2, c)SU3.
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argminP
1PN

j=1 λ
(SU)
j

∑N
j=1 λ

(SU)
j (

∑M
i=1 pjiCji(P))

subject to
(
PN

j=1 ρj)
2

N
PN

j=1(ρj)2
≥ F

(26)
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TABLE 1
Performance Evaluation and Comparison between GOS/Proposed scheme.

SUs Average waiting time Average number of Average number of
deferring by other SUs interruptions by PUs
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SU3 25.2064 / 45.9520 0.6450 / 2.1044 0.1240 / 0.1124
SU4 34.1601 / 51.7269 0.5400 / 2.0162 0.1750 / 0.1116
SU5 60.2818 / 58.5037 1.5255 / 1.8734 0.0270 / 0.1106
SU6 92.7285 / 70.2131 1.3770 / 1.7850 0.0230 / 0.1107
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